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ABSTRACT

The equivalence problem of parameterized surfaces with respect to
linear changes of parameters is considered. Separating systems of invari-
ants and uniqueness theorem are offered. The field of invariant differen-
tial rational functions over the constant field is described as a differential
field by giving a finite system of generators.
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1. Introduction

To set up our investigation problems let us consider the following typical
geometric problem.

Let n,m be natural numbers,H be a subgroup of the affine groupGL(n,R) ∝
Rn, Ĝ be a subgroup of Diff(B) the group of diffeomorphisms of an open unit
ball B ⊂ Rm and u : B→ Rn be a parameterized surface, where R is the field
of real numbers, u is considered to be infinitely smooth, written in row form.



i
i

i
i

i
i

i
i

Bekbaev, U.

Definition 1.1. A function f∂(u(t)) of u(t) = (u1(t), ..., un(t)) and its finite
number of derivatives relative to ∂

∂t1
, ..., ∂

∂tm
is said to be invariant (more

exactly, (Ĝ,H)- invariant) if the equality

f∂(u(t)) = fδ(u(s(t))h+ h0)

holds for any s ∈ Ĝ, (h, h0) ∈ H and t ∈ B, where s(t) = (s1(t), ..., sm(t)),
δi = ∂

∂si
.

It should be noted that

∂

∂ti
=

m∑

j=1

∂sj(t)

∂ti

∂

∂si
,

i.e. δ = g−1∂, where g is matrix with the elements gij =
∂sj(t)
∂ti

, i, j = 1, ...,m,

and ∂ (δ) is the column vector with the “coordinates” ∂
∂t1
, ..., ∂

∂tm
(respectively,

∂
∂si
, ..., ∂

∂sm
). Note also that if sj(t) are linear over R with respect to t then

g ∈ GL(m,R).

Such invariants are important in the equivalence problem of parameterized
surfaces relative to corresponding motion groups of vector spaces and gauge
transformations. Therefore it was the main objective of study for numerous
papers with different geometrical methods appropriate to the motion group H.

To represent the above considered problem in a different way let t run B
and F = C∞(B) be the differential ring of infinitely smooth functions relative
to differential operators ∂

∂t1
, ..., ∂

∂tm
. Every infinitely smooth parameterized

surface u : B → Rn can be regarded as an element of differential module
(Fn; ∂1, ∂2, ..., ∂m), with the coordinate-wise action of ∂i = ∂

∂ti
on elements of

Fn. If elements of this module are written in row form the above
transformations look like

u = (u1, ..., un) 7→ uh+ h0, ∂ 7→ g−1∂,

where g is a matrix with elements gij =
∂sj(t)
∂ti

i, j = 1, ...,m, (h, h0) ∈ H, s ∈ Ĝ.
Therefore the following algebraic analogue of the above problem is natural.

Let (F ; ∂) be any differential field, where ∂ is a column-vector of commuting
system of differential operators ∂1, ..., ∂m of F ,

C = {a ∈ F : ∂ia = 0 for i = 1, ...,m}
be its constant field, H be a subgroup of GL(n,C) ∝ Cn and

GL∂(m,F ) = {g ∈ GL(m,F ) : ∂igjk = ∂jgik for i, j, k = 1, ...,m}.
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One can easily verify that (F, δ) also is a differential ring with the com-
muting system of differential operators δ1, δ2, ..., δm whenever δ = g−1∂, g ∈
GL∂(m,F ). This transformation is an analogue of gauge transformation (change
of variables) for abstract differential rings. In general the set GL∂(m,F ) is not
a group with respect to the ordinary product of matrices as far as it is not
closed with respect to that product. But by the use of it a natural groupoid
(Weinstein, 1996) can be constructed with the base {g−1∂ : g ∈ GL∂(m,F )}.

Let G stand for a sub-groupoid of GL∂(m,F ) , x1, ..., xn be differential
algebraic independent variables over F and x stand for the row vector with
coordinates x1, ..., xn. We use the following notations : C[x] is the ring of
polynomials in x1, ..., xn (over C), C(x) is the field of rational functions in x,
C{x, ∂} is the ring of ∂-differential polynomial functions in x and C〈x, ∂〉 is
the field of ∂-differential rational functions in x over C.

Definition 1.2. An element f∂〈x〉 ∈ C〈x; ∂〉 is called to be (G,H)- invariant
(G- invariant) if the equality

fg
−1∂〈xh+ h0〉 = f∂〈x〉

(respectively, fg
−1∂〈x〉 = f∂〈x〉)

holds for any g ∈ G, (h, h0) ∈ H (respectively, for any g ∈ G).

Let C〈x; ∂〉(G,H) (respectively, C〈x; ∂〉G) stand for the field of all such
(G,H) (respectively, G)- invariant rational functions.

The description of the field C〈x; ∂〉(G,H) for different (G,H) is of great
interest due to its relation with the problem of equivalency of surfaces in differ-
ent geometries. In differential geometry usually all differential functional (not
compulsory differential rational) invariants of x are considered and they are in-
vestigated by geometric methods. In this paper we describe C〈x; ∂〉G for some
subgroups G of GL(m,C) by pure algebraic means. To the best knowledge of
the author even in classical cases analogies of these results have not been ob-
tained for arbitrary n. For the used notions of differential field in introduction
one can see (Kolchin, 1973), (Bekbaev, 2006).

2. Preliminaries

In this section we deal with some notions and results which will be used in fu-
ture. These notions and results can be found in detail in (Bekbaev, 2012),(Bek-
baev, 2010). Let F stand for a field of characteristic zero.
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For a positive integer n let In stand for all row n-tuples with nonnegative
integer entries with the following linear order: β = (β1, β2, ..., βn) < α =
(α1, α2, ..., αn) if and only if |β| < |α| or |β| = |α| and β1 > α1 or |β| = |α|,
β1 = α1 and β2 > α2, et cetera , where |α| stands for α1 + α2 + ... + αn. We
consider in In component-wise addition and subtraction (when the result is in
In), for example, α+β = (α1 +β1, ..., αn +βn). It is clear that for α, β, γ ∈ In
one has α < β if and only if α+ γ < β + γ. We write β � α if βi ≤ αi for all

i = 1, 2, ..., n,
(
α
β

)
stands for α!

β!(α−β)! , α! = α1!α2!...αn! Also we consider

the following direct (or tensor) product In×Im −→ In+m as follows. If α ∈ In,
β ∈ Im then α× β = (α, β) ∈ In+m

Let n and n′ be any fixed nonnegative integers (In the case of n = 0 it is
assumed that In = {0}).

For any nonnegative integer numbers p, p′ let Mn′,n(p′, p;F ) = M(p′, p;F )

stand for all ”p′ × p” size matrices A = (Aα
′
α )|α|=p,|α′|=p′ (α′ presents row, α

presents column and α ∈ In, α′ ∈ In′). The ordinary size of a such matrix is(
p′ + n′ − 1
n′ − 1

)
×
(
p+ n− 1
n− 1

)
. Over such kind matrices we introduce the

"symmetric product" as follows:

Definition 2.1. If A ∈ M(p′, p;F ) and B ∈ M(q′, q;F ) then A
⊙
B = C ∈

M(p′ + q′, p + q;F ) such that for any |α| = p + q, |α′| = p′ + q′, where α ∈
In, α

′ ∈ In′ ,
Cα
′

α =
∑

β,β′

(
α
β

)
Aβ
′

β B
α′−β′
α−β ,

where the sum is taken over all β ∈ In, β′ ∈ In′ , for which |β| = p, |β′| = p′,
β � α and β′ � α′.

Proposition 2.1. For the above defined product the following hold true.

1. A�B = B �A.

2. (A+B)� C = A� C +B � C.

3. (A�B)� C = A� (B � C)

4. (λA)�B = λ(A�B) for any λ ∈ F .

5. If h = (h1, h2, ..., hn) ∈ M(0, 1;F ), v = (v1, v2, ..., vn
′
) ∈ M(1, 0;F ),
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then
(h�m)0α = m!hα, (v�m)α

′
0 =

(
m
α′

)
vα
′
,

where hα stands for hα1
1 hα2

2 ...hαn
n ,

(
m
α′

)
= m!

α′! , and A�k means the k-th

power of matrix A with respect to the symmetric product.

In future (F, ∂) will stand for a field F with the given linear independent
commuting system ∂ = (∂1, ..., ∂m) of differential operators of F . Its constant
field will be denoted by C.

Proposition 2.2. The following are true.

1. ∂ � (A�B) = (∂ �A)�B +A� (∂ �B).

2. ∂ � (A(p′, q)B(q, p)) = (∂ �A)B + 1
q+1 (A� g)(δ �B) whenever

δk(Bα
′−ek

α ) =
α′k
q + 1

(δ �B)α
′
α

for any k = 1, 2, ...,m, α′ ∈ Im and |α| = p, where δ = g−1∂, g ∈ GL∂(m,F ).

3. For any g ∈Mat(1, 1;F ) the equalities gA1 � gA2 � ...� gAk =

g�k

k!
(A1 �A2 � ....�Ak), B1g�B2g� ...�Bkg = (B1 �B2 � ....�Bk)

g�k

k!

are held and if g is not singular then the inverse of g
�k

k! is (g−1)�k

k! .

4. ∂ � (A 1
k!δ
�k) = (∂ � A) 1

k!δ
�k + (A � g) 1

(k+1)!δ
�k+1, where δ = g−1∂,

g ∈ GL∂(m;F ).

5. For g ∈ GL∂(m;F ) the condition g ∈ GL(m;C) is equivalent to ∂ � g =
0.

Further let ∗ : GL(m,F )→ GL(m,F ) be a group anti-homomorphism, that
is (g1g2)∗ = g∗2g

∗
1 for any g1, g2 ∈ GL(m,F ) and E stand for a square matrix

order m over F . Consider the following subgroups of GL(m,C)

G = {g ∈ GL(m,C) : g∗Eg = E}, SG = {g ∈ SL(m,C) : g∗Eg = E}

Note that all classical subgroups ofGL(m,C) are in such form. For example,
it is easy to see that if ∗ : g 7→ g−1, E is the identity matrix then G = GL(m,C)
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and SG = SL(m,C), if ∗ : g 7→ gT , E the identity matrix then G = O(m,C)
and SG = SO(m,C), where T stands for the transpose.

Theorem 2.1. Let δ = (δ1, δ2, ..., δm) be any system of commuting differential
operators with the same constant field C, X ∈ GL∂(m,F ), Y ∈ GLδ(m,F ) be
elements such that X−1∂ = Y −1δ on F . Then

a. (X−1 � X−1)(∂ � X) = (Y −1 � Y −1)(δ � Y ) and X∗EX = Y ∗EY if
and only if Y = gX for some g ∈ G.

b. (X−1 � X−1)(∂ � X) = (Y −1 � Y −1)(δ � Y ) , X∗EX = Y ∗EY and
|X| = |Y | if and only if Y = gX for some g ∈ SG, where |X| stands for the
determinant of X.

Proof. Note that due to ∂′ = X−1∂ = Y −1δ = δ′ one has Y X−1 ∈ GLδ(m,F ).
Therefore due to Proposition 2.2 the condition Y X−1 ∈ GL(m,C) is equiv-
alent to

0 = δ � (Y X−1) = (δ � Y )X−1 +
1

2
(Y � Y )(δ′ �X−1).

But one also has the identity

0 = δ � (Y Y −1) = (δ � Y )Y −1 +
1

2
(Y � Y )(δ′ � Y −1).

Hence Y X−1 ∈ GL(m,C) is equivalent to

(δ′ � Y −1)Y = (δ′ �X−1)X = (∂′ �X−1)X.

The left side of this equalities is equal to − 1
2 (Y −1 � Y −1)(δ � Y ) due to

0 = δ′ � (Y −1Y ) = (δ′ � Y −1)Y +
1

2
(Y −1 � Y −1)(δ � Y )

and the right side is equal to − 1
2 (X−1 �X−1)(∂ �X). Therefore the relation

Y X−1 = g ∈ GL(m,C) is equivalent to

(X−1 �X−1)(∂ �X) = (Y −1 � Y −1)(δ � Y ).

In the first case Y X−1 = g ∈ G is equivalent to (Y X−1)∗E(Y X−1) = E
that is to X∗EX = Y ∗EY . In the second case Y X−1 = g ∈ SG is equivalent to
(Y X−1)∗E(Y X−1) = E and |Y X−1| = 1. This means that Y X−1 = g ∈ SG
is equivalent to X∗EX = Y ∗EY and |X| = |Y |.
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Note that Y = g−1X, X−1∂ = Y −1δ imply δ = g−1∂ on F . Theorem
2.1 can be considered as some kind of "Uniqueness up to G (SG)-equivalence"
theorem for the solutions in GL∂(m,F ) of the corresponding systems of equa-
tions.

Remark 2.1. The above theorem can be easily generalized for subgroups defined
by family of anti-isomorphisms of GL(m,F ).

3. Equivalence of Parameterized Surfaces,
Uniqueness, Invariant Differential Rational

Functions

Definition 3.1. We say that pairs (∂,a), (δ, b), where a, b ∈ Fn, δ = (δ1, ..., δm)
is any system of commuting differential operators on F with the same constant
field C, are (G,H) equivalent if

1. C〈a; ∂〉 = C〈b; δ〉.

2. There exists an isomorphism J of ∂-differential field C〈a; ∂〉 and δ-
differential field C〈b; δ〉 such that J(a) = b = ah+ h0 for some (h, h0) ∈ H.

3. There exists g ∈ G such that δ = g−1∂ on C〈a; ∂〉.

Assume that we have such a nonsingular matrixM∂〈x〉 = ((M∂)ij〈x〉)i,j=1,m,
where (M∂)ij〈x〉 ∈ C〈x, ∂〉 and ∂k(M∂)ij〈x〉 = ∂i(M∂)kj 〈x〉 for i, j, k = 1,m,
that

Mg−1∂〈xh+ h0〉 = g−1M∂〈x〉
for any g ∈ G and (h, h0) ∈ H. In this case C〈x, ∂〉(G,H) is a differential field
with respect to the commuting system of differential operators δ1, ..., δm, where
δ = M∂〈x〉−1∂

Therefore one can try to find nonsingular matrix M∂〈x〉 and then describe
the field C〈x, ∂〉(G,H) as δ- differential field over C. In the following theorem
it is assumed that we have such matrix M∂〈x〉 for G (SG), H = {1} case,
M0 = {a ∈ Fn : |M∂〈a〉| 6= 0}.
Theorem 3.1. If δ = (δ1, ..., δm) is any system of commuting differential
operators on F with the same constant field C, a is any element of M0 then

1. Pairs (∂,a), (δ,a) are G equivalent if and only if the following equalities
are true.
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a. C〈a; δ〉 = C〈a; ∂〉

b. M∂〈a〉−1∂ = Mδ〈a〉−1δ on C〈a; ∂〉

c. (M∂〈a〉−1�M∂〈a〉−1)(∂�M∂〈a〉) = (M δ〈a〉−1�Mδ〈a〉−1)(δ�Mδ〈a〉)

d. M∂〈a〉∗EM∂〈a〉 = Mδ〈a〉∗EMδ〈a〉.

2. Pairs (∂,a), (δ,a) are SG equivalent if and only if the following equalities
are true.

a. C〈a; δ〉 = C〈a; ∂〉

b. M∂〈a〉−1∂ = Mδ〈a〉−1δ on C〈a; ∂〉

c. (M∂〈a〉−1�M∂〈a〉−1)(∂�M∂〈a〉) = (M δ〈a〉−1�Mδ〈a〉−1)(δ�Mδ〈a〉)

d. M∂〈a〉∗EM∂〈a〉 = Mδ〈a〉∗EMδ〈a〉

e. |M∂〈a〉| = |Mδ〈a〉|.

Proof. If (∂,a), (δ,a) are G-equivalent then δ = g−1∂ for some g ∈ G on
C〈a; δ〉 = C〈a; ∂〉 and

M δ〈a〉 = Mg−1∂〈a〉 = g−1M∂〈a〉

and therefore

M∂〈a〉−1∂ = (g−1M∂〈a〉)−1(g−1∂) = Mδ〈a〉−1δ,

M∂〈a〉∗EM∂〈a〉 = M δ〈a〉∗EMδ〈a〉.
Moreover, according to Proposition 2.2 and the equality

δ � (g−1M∂〈a〉) =
g−1 � g−1

2
(∂ �M∂〈a〉)

one has

(M δ〈a〉−1�Mδ〈a〉−1)(δ�Mδ〈a〉) = (M∂〈a〉−1g�M∂〈a〉−1g)(δ�(g−1M∂〈a〉)) =

(M∂〈a〉−1�M∂〈a〉−1)
g � g

2

g−1 � g−1
2

∂�M∂〈a〉 = (M∂〈a〉−1�M∂〈a〉−1)∂�M∂〈a〉.
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In g ∈ SG case one also has

|M∂〈a〉| = |Mδ〈a〉|.

Vice versa, assume that M∂〈a〉−1∂ = Mδ〈a〉−1δ on C〈a; δ〉 = C〈a; ∂〉 and
the equalities

(M∂〈a〉−1 �M∂〈a〉−1)(∂ �M∂〈a〉) = (Mδ〈a〉−1 �M δ〈a〉−1)(δ �Mδ〈a〉),

M∂〈a〉∗EM∂〈a〉 = Mδ〈a〉∗EMδ〈a〉
are true. In this case for X = M∂〈a〉, Y = Mδ〈a〉 Theorem 2.1 says that δ =
g−1∂ on C〈a; δ〉 = C〈a; g−1∂〉 for some g ∈ G, which means that (∂,a), (δ,a)
are G-equivalent. In |M∂〈a〉| = |Mδ〈a〉| case the same theorem guarantees
that g ∈ SG.

In connection with this result and Theorem 2.1 the following existence
problem arises. Let A ∈ Mat(2, 1;F ), B ∈ Mat(1, 1;F ) be any matrices over
F , and ∂′ = (∂′1, ..., ∂

′
m) be a system of commuting differential operators on F .

When does the following system

∂ �X =
1

2
(X �X)A, X∗EX = B, ∂′ = X−1∂

have a solution in GL∂(m,F )? A detailed investigation of this question is a
nice problem. Here we would like to formulate this problem more precisely in
E ∈ GL(m,C), X∗ = X−1 case.

First of all the matrix should be nonsingular and if X is any solution of this
system then X∗ should satisfy the equality

(∂′ �X∗)(X∗)−1 = (∂′ �B)B−1 − 1

2
(B � I)AB−1,

where I ∈Mat(1, 1;F ) stands for the ordinary identity matrix. Indeed,

∂′ �B = ∂′ � (X∗EX) = (∂′ � (X∗E))X +
1

2
((X∗E)�X−1)(∂ �X) =

(∂′ �X∗)EX +
1

2
((X∗EX)� I)

1

2
(X−1 �X−1)(∂ �X) =

(∂′ �X∗)(X∗)−1X∗EX +
1

2
(B � I)A = (∂′ �X∗)(X∗)−1B +

1

2
(B � I)A.
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In our case it implies that there should be the equality

∂′ �B =
1

2
(B � I)A−AB

Therefore in this case we can formulate the existence problem as follows:

Question. If for A, B the equalities

∂′ �B =
1

2
(B � I)A−AB, |B| = |E|

are valid then does exist X ∈ GL∂(m,F ) such that

∂ �X =
1

2
(X �X)A, X−1EX = B, ∂′ = X−1∂?

It seems that the answer to this question is positive if one requires X ∈
GL∂(m, F̂ ), where (F̂ , ∂) is an extension of (F, ∂).

Theorem 3.1 indicates that if a function f∂(x) is G invariant then it is a
function of (M∂〈x〉−1�M∂〈x〉−1)(∂�M∂〈x〉) andM∂〈x〉∗EM∂〈x〉 in general
sense of function. But if f∂(x) is a ∂-differential rational function can it be
expressed as a ∂-differential rational function of components of

(M∂〈x〉−1 �M∂〈x〉−1)(∂ �M∂〈x〉), and M∂〈x〉∗EM∂〈x〉 ?

The following theorem deals with the later in G = GL(m,C) case.

Theorem 3.2. The equality

C〈x; ∂〉GL(m,C) = C〈x, (M∂〈x〉−1 �M∂〈x〉−1)(∂ �M∂〈x〉); δ〉

holds true, where δ stands for M∂〈x〉−1∂.

Proof. First of all note that all components of (δ � M∂〈x〉−1)M∂〈x〉 are in
C〈x; ∂〉GL(m,C). If fg

−1∂〈x〉 = f∂〈x〉 = F ((∂�kx)k=0,1,...) then

F ((∂�kx)k=0,1,...) = F (((g−1∂)�kx)k=0,1,...) = F ((
(g−1)�k

k!
∂�kx)k=0,1,...).

Since the characteristic of F is zero one has

F ((∂�kx)k=0,1,...) = F ((
(S−1)�k

k!
∂�kx)k=0,1,...)

84 Malaysian Journal of Mathematical Sciences



i
i

i
i

i
i

i
i

On Equivalence of Parameterized Surfaces

for any matrix S = (sij)i,j=1,2,...,m with the such variables sij over F that
∂ksij = ∂iskj for all i, j, k = 1, 2, ..,m. In particular, this equality is true for
S = M∂〈x〉 and note that all components of (M∂〈x〉−1)�k∂�kx are in C〈x; ∂〉G.

Let us show that the same components are in C〈x, (δ�M∂〈x〉−1)M∂〈x〉; δ〉.
Components of δx = M∂〈x〉−1∂x are in C〈x, (δ �M∂〈x〉−1)M∂〈x〉; δ〉. Now
on induction due to the equality

δ � ((M∂〈x〉−1)�k∂�kx) =

k((δ�M∂〈x〉−1)�(M∂〈x〉−1)�k−1)∂�kx+(k+1)−1(M∂〈x〉−1)�k+1∂�k+1x =

k((δ �M∂〈x〉−1)M∂〈x〉 � I�k−1)(M∂〈x〉−1)�k∂�kx+

(k + 1)−1(M∂〈x〉−1)�k+1∂�k+1x

one can conclude that the components of (M∂〈x〉−1)�k+1∂�k+1x also are in
C〈x, (δ�M∂〈x〉−1)M∂〈x〉; δ〉. Now to complete the proof it is enough to note
that due to M∂〈x〉−1M∂〈x〉 = I one has

(δ �M∂〈x〉−1)M∂〈x〉 = −1

2
(M∂〈x〉−1 �M∂〈x〉−1)(∂ �M∂〈x〉).

Lemma 3.1. The system of components of M∂〈x〉 is algebraic independent
over C〈x; ∂〉GL(m,C).

Proof. Let P [(sij)i,j=1,2,...,m] be any polynomial over C〈x; ∂〉GL(m,C) for which
P [M∂〈x〉] = 0. In this case it should remain be true if one substitutes g∂ for
∂ into it. As far as the coefficients of this polynomial are not changed by such
transformation and Mg∂〈x〉 = gM∂〈x〉, one has P [gM∂〈x〉] = 0 for any g ∈
GL(m,C). Due to zero characteristic of C this implies that P [(sij)i,j=1,2,...,m] =
0.

The lemma allows to find a system of generators of C〈x; ∂〉G in the following
way: Find a system of generators of the field C〈x; ∂〉GL(m,C)(M∂〈x〉)G. Its
union with the system of components of x, (M∂〈x〉−1�M∂〈x〉−1)(∂�M∂〈x〉)
one can take as a system of generators of the δ- differential field C〈x; ∂〉G.

Note that among the generators one can have such f∂〈x〉 for which the equa-
tion f∂〈x〉 = 0 has only trivial solution, for example, like f∂〈x〉 =

∑
i=1,...,m(∂ix1)2

for real orthogonal group case.
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Note also that the solution set of differential equation f∂〈x〉 = 0, where
f∂〈x〉 ∈ C〈x; ∂〉G, is invariant with respect to the "G-change of parameters".
Therefore any system of δ-generators of C〈x; ∂〉G may have some fundamental
meaning in the physical system which’s laws are G-invariant a priori. In con-
nection with it one can ask, for example, whether one can have the system of
Maxwell equations (may be by including some equations with trivial solutions)
as a system of δ-generators of C〈x; ∂〉(G,H) for some (G,H)?

The next result is on the existence of matrix M∂〈x〉 with the needed prop-
erty which can be used for any subgroup of GL(m,C).

Theorem 3.3. For the matrix M∂〈x〉 consisting of columns

∂x1, f
∂
1 〈x〉−1∂f∂1 〈x〉, ..., f∂1 〈x〉−

mk−1
m−1 ∂f∂m−1〈x〉

the equality
Mg−1∂〈x〉 = g−1M∂〈x〉

is true for any g ∈ GL(m,C), where

f∂1 〈x〉 = |∂∂Tx1|, f∂k+1〈x〉 = |∂∂T f∂k 〈x〉|

Proof. Note that if g ∈ GL(m,C) then for δ = g−1∂ one has

∂∂Tx1 = gδδTx1g
T

Taking the determinant of both sides of the equality we have

|∂∂Tx1| = |g|2|δδTx1|. (1)

, where |M | stands for the determinant of the matrix M . Now repeatedly
applying (1) to itself setting x1 as y = |∂∂Tx1| = |g|2|δδTx1| to get

|∂∂T |∂∂Tx1|| = |g|2m+2|δδT |δδTx1||

and etcetera. So one can construct

f∂1 〈x〉 = |∂∂Tx1|, f∂2 〈x〉 = |∂∂T |∂∂Tx1||, ..., f∂k+1〈x〉 = |∂∂T f∂k 〈x〉|, ...

for which
f∂k 〈x〉 = |g|2mk−1+2mk−2+...+2m+2fδk 〈x〉.

Therefore,

fδ1 〈x〉−
mk−1
m−1 δfδk 〈x〉 = g−1(f∂1 〈x〉−

mk−1
m−1 ∂f∂k 〈x〉).
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Consider the matrix M∂〈x〉 consisting of columns

∂x1, f
∂
1 〈x〉−1∂f∂1 〈x〉, ..., f∂1 〈x〉−

mm−1
m−1 ∂f∂m−1〈x〉.

Due to the construction of the matrix one has

Mg−1∂〈x〉 = g−1M∂〈x〉.

Example 3.1. Let us consider m = 1 (ordinary differential field) case, ∂ = d.
In this case the previous theorem for M∂〈x〉 provides dx1, so δ = 1

dx1
d and

(δ �Md〈x〉−1)Md〈x〉 = −d
2x1
dx21

.

Therefore the system {x, d2x1

dx2
1
}, can be taken as a system of generators for the

δ-differential field C〈x; ∂〉C∗ .
Example 3.2. Let us consider m = 2 case. Even in this case the expressions
for entries of the matrix −(δ �Md〈x〉−1)Md〈x〉 = A are quite huge. Here are
components of

A =
1

2
(Md〈x〉−1 �Md〈x〉−1)(∂ �Md〈x〉 ∈Mat(2, 1;F ),

where the following notations are used: ∂
∂s := ∂1, ∂

∂t := ∂2, y := x1, z :=
yssytt − y2st, ∆ := yszt − ytzs.

A
(2,0)
(1,0) = ∆−2(yssz

2
t − 2ystzszt + yttz

2
s),

A
(1,1)
(1,0) = ∆−2z(−yssztyt + 2yst(yszt + ytzs)− yttzsys),

A
(0,2)
(1,0) = ∆−2z2(yssy

2
t − 2ystysyt + ytty

2
s),

A
(2,0)
(0,1) = z−1∆−2(zssz

2
t − 2zstzszt + zttz

2
s),

A
(1,1)
(0,1) = z−1∆−2(z(−zssztyt + 2zst(yszt + ytzs)− zttzsys)− zszt(ztys + zsyt)),
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A
(0,2)
(0,1) = ∆−2(z(zssy

2
t − 2zstysyt + ztty

2
s)− (yszt − zsyt)2).

LetM∂〈x〉 be any element of GLGL(m,C)(m,C〈x; ∂〉) for whichMg−1∂〈x〉 =
g−1M∂〈x〉 is true for any g ∈ GL(m,C).

Theorem 3.4. For any subgroup G of GL(m,C) the equality

δ − tr.degC〈x; ∂〉G/C = n

is true, where δ stands for M∂〈x〉−1∂.

Proof. First of all we note that δ− tr.degC〈x; ∂〉/C = ∂− tr.degC〈x; ∂〉/C = n
as far as δ = M∂〈x〉−1∂. Due to

C〈x; ∂〉 = C〈x, (M∂〈x〉−1 �M∂〈x〉−1)(∂ �M∂〈x〉),M∂〈x〉−1; δ〉

to prove the theorem for G = GL(m,C) case it is enough to show that entries
of M∂〈x〉−1 are δ- differential algebraic over C〈x; ∂〉GL(m,C). All components
of (δ �M∂〈x〉−1)M∂〈x〉 = 2A are in C〈x; ∂〉GL(m,C). Therefore one has the
equality

δ �M∂〈x〉−1 = 2AM∂〈x〉−1.
One also has M∂〈x〉−1 ∈ GLδ(m,C〈x; ∂〉) which implies that all components
of M∂〈x〉−1 are δ-differential algebraic over C〈x; ∂〉GL(m,C). For any subgroup
G we have

C〈x; ∂〉GL(m,C) ⊂ C〈x; ∂〉G ⊂ C〈x; ∂〉.
This implies that δ − tr.degC〈x; ∂〉G/C = n.
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